SYNTHETIC ENTRY INTO CYCLOPENTYL ANALOGS OF MUSCARINE

Richard S. Givens,* Don R. Rademacher,^{1a} Janet Kongs^{1b} and John Dickerson Department of Chemistry, University of Kansas, Lawrence, Kansas 66045 (Received in USA 10 June 1974; received in UK for publication 26 July 1974)

As a result of recent work, it is apparent that desether muscarine (l), the cyclopentyl analog of muscarine (2), parallels the activity and specificity of muscarine at the cholinergic receptor.² This communication reports a stereoselective entry into the substituted cyclopentane system.

Earlier we reported a photochemical route^{2b} depicted in Scheme 1 which gave the desired desether muscarine $\frac{1}{2}$ in an overall yield of 4% from bromoformate $\frac{3}{2}$.³ Need for sufficient quantities of $\frac{1}{2}$ for resolution and oxidation^{2b} studies prompted development of a second route.

An attractive entry into cyclopentyl derivatives such as l_{i} is the stereospecific opening of a symmetrical intermediate giving 1,2-trans sub-

stitution. For this purpose, the epoxy amide 10 was selected for three reasons: (1) the opening of epoxides with reagents like lithium dimethyl cuprate are generally regarded to be stereospecific⁴ and yield <u>trans</u>-1-hydroxy-2-methyl derivatives, (2) the <u>trans</u>-epoxy amide should be obtainable by a stereoselective epoxidation of the N,N-dimethyl-3-cyclopentenyl carboxamide 9 by modification of the procedure of Henbest, ⁵ and (3) conversion of the dimethyl amide to the quater-

3211

nary amine should be straightforward.

⁽overall from 3, 4%)

The route chosen is shown in Scheme 2 and gave the desired desether muscarine \downarrow in an overall yield of 60% from amide \Im as follows. A pentane solution of N,N-dimethyl-3-cyclopentenylcarboxamide⁷ (\Im), obtained in 83% yield from the known 3-cyclopentenylcarboxylic acid⁶ (\S) via the acid chloride, was treated with <u>m</u>-chloroperbenzoic acid⁵ to give the <u>trans</u>-epoxy amide \wr Q (90%) as an oil. After purification by silica gel chromatography the epoxy amide \natural Q exhibited characteristic infrared and nmr absorption spectra: ir (film) 6.11 (amide carbonyl), 8.00 and 11.90 μ (epoxide) and nmr (CDCl₃) & 3.53 (s, 2H epoxymethines), 3.01 (s, 3H, NCH₃), 2.92 (s, 3H, NCH₃), 3.1-2.6 (m, 1H, carboxymethine) and 2.32-1.82 (m, 4H, cyclopentylmethylenes).

The <u>trans</u>-epoxy amide $\downarrow 0$ was treated with lithium dimethyl cuprate⁴ to give the amido alcohol $\downarrow 1$ (67%) via a stereospecific opening of the epoxide. The infrared spectrum of the product oil showed absorptions at (film) 2.94 br (OH) and 6.17 μ (amide carbonyl) and the nmr (CDCl₃) at 6 3.8-3.4 (m, 1H, hydroxymethine), 3.67 (br s, 1H, OH), 3.1 (s, 3H, NCH₃), 2.92 (s, 3H, NCH₃), 2.5-1.5 (m, 5H, ring protons) and 1.0 (d, 3H, ring CH₃, J = 7 Hz). Reduction of the hydroxyamide with a four fold excess of lithium aluminum hydride gave, after workup, a 98% crude yield of the hydroxy amine $\frac{12}{12}$ which was purified and further characterized as the methyl iodide salt $\frac{1}{2}$. Spectral characteristics of $\frac{12}{2}$ were in accord with the assigned structure: ir (film) 2.95 μ (OH) and no carbonyl and nmr (CDCl₃) 6 3.8-3.4 (m, 1H, hydroxymethine), 2.7 (br s, 1H, OH), 2.18 (br s, 8H, NCH₃, NCH₂), 2.3-1.5 (m, 6H, cyclopentyl H), and 1.02 (d, 3H, J = 7 Hz, ring CH₃). The salt obtained upon treatment of $\frac{12}{12}$ with methyl iodide at room temperature in ether had identical physical and spectral properties when compared with $\frac{1}{4}$ obtained by the photochemical route.

3213

Acknowledgments

Financial assistance from NIH (GM 16611) and the KU Research Fund and helpful discussions with Professor Robert Carlson are gratefully acknowledged.

References

1. a. NDEA Title IV Fellow 1970-1973.

b. Undergraduate Research Participant, Summer 1972.

- 2. (a) Reported in part at the American Chemical Society Meeting, Dallas, Texas, 1973, MEDI D 31. (b) Also see K. G. R. Sundelin, R. A. Wiley, R. S. Givens, and D. R. Rademacher, <u>J. Med. Chem.</u>, <u>15</u>, 235 (1973) and (c) R. S. Givens and D. R. Rademacher, <u>ibid</u>, <u>17</u>, 457 (1974) for biological activity of <u>1</u> and its oxidation product.
- 3. R. R. Sauer, J. A. Beisler and H. Falich, <u>J. Org. Chem.</u>, <u>32</u>, 574 (1967).
- Similar stereospecific epoxide openings have been found by B. C. Hartman,
 T. Livingston, and B. Rickborn, <u>J. Org. Chem</u>., <u>38</u>, 4346 (1973), C. R.
 Johnson, R. W. Herr and D. W. Wieland, <u>ibid</u>, <u>38</u>, 4263 (1973) and references therein.
- A similar stereoselective epoxidation was performed on 3-cyanocyclopentene by H. Henbest, J. McCullough, N. Crossley, A. Darby, B. Nicholls and M. Stewart, <u>Tetrahedron Lett</u>, 398 (1961). For contrasting results see R. S. Schultz, W. H. Staas, and L. A. Spurlock, <u>J. Org. Chem</u>., <u>38</u>, 3091 (1975).
- 6. K. Murdock and R. Angier, <u>J. Org. Chem</u>., <u>27</u>, 2395 (1962).
- 7. All new compounds gave satisfactory elemental analysis.